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IN A D E V E L O P E D  T U R B U L E N T  F L O W  IN A T U B E  

P. G. Zaets, A. T. Onufriev, N. A. Safarov, and It. A. Safarov UDC 532.517.4 

In [1, 2] the results of hot-wire measurements of spectral distributions corresponding to second- and 
third-order moments were reported. This paper deals with spectral distributions related to some fourth-order 
moments for pulsatory velocities of a turbulent flow. 

The measurements were taken in a developed turbulent flow in a straight tube of diameter 2R0 = 
0.06 m. The Reynolds number Re calculated from the mean flow velocity and the tube diameter was equal to 
3.47-104. The axial flow velocity was equal to 10 m/see, the kinematic viscosity coefficient u = 1.4.10 -5 m2/sec, 
and the friction velocity v. = 0.433 m/see. The unit and experimental method employed were described in 
[1-5]. 

One of the goMs of this study was to verify whether or not an approximate similarity principle existed 
in the energy range of wavenumbers. This principle would provide a sufficiently universal representation of 
spectral distributions divided by the magnitudes of corresponding one-point moments by using wavenumbers 
normalized on an integrM correlation scale. As such a scale we chose an "isotropic" longitudinal integral 
scale A0 calculated from the local values of the energy of fluctuations and the rate of energy dissipation 
(see [6]). 

To evaluate the spectrum, the fast Fourier transform and the procedure described in [7] were used. 
The flow is described in more detail in [2]. 

Spectra E~z,rr(k) of differences between the two-point fourth-order moments and the corresponding 
products of the one-point second-order moments not increasing with the distance between the points have 
been measured, for example, (U**,rr) -- (U2~)(U 2} [8, 9]. Velocity fluctuations are as follows: u,  = Ul, U r  = U2, 
U~ = U3. The subscripts 1 and 2 in the spectra correspond to subscripts x and r respectively. Spectra of 
the moments, in which the two components of velocity fluctuations correspond to one point and the two 
components of velocity correspond to the other, have been considered. The distance between the points varied 
along the flow axis. The transition to wavenumbers was done according to Taylor's formula k = 2~f/(V~},  
where (Vx/ is the local mean value of the longitudinal flow velocity, and f is the frequency, the dependence 
on which is determined experimentally. 

The correspondence of the spectra and moments is given in Table 1. The measured values of the one- 
point fourth-order moments divided by v. 4 are shown in Table 2. The data for the second- and third-order 
moments were reported in [2]. 

The fourth-order moments have been calculated from the spectral distributions. The values of the one- 
point moments for the longitudinal velocity fluctuations measured with an x-shaped and a single-wire probes 
differ by around 6%. A comparison with the results reported in [10, 11] is shown in Table 3 for the excess 
coefficients 51 - 3 = (u4)/(u21) 2 - 3, 52 - 3 and 5 3 - -  3. For [10] the superscripts correspond to Re = 8-104, 
the subscripts to 4.104 . The agreement is satisfactory. 
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TABLE 1 

El1,11 El2,12 E12,11 El1,22 E22,22 E12,22 
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TABLE 2 

T # 

0 

0.2 
0.4 
0.6 
0.8 

(u:) lv ~, 

1.46 
2.78 
6.70 
9.67 

24.0 

2 2 4 (,=,.)iv. 

0.377 
0.621 
1.33 
1.82 
3.82 

-0.01 
0.655 
1.77 
2.55 
6.07 

3 4 ( U x U r ) / ~ .  

0 
0.336 
0.795 
1.07 
2.14 

4 4 (,~,)/,,. 

0.70 
0.88 
1.45 
1.82 
3.11 

4 4 (%)Iv. 

0.687 
1.02 
2.08 
2.88 
6.07 

TABLE 3 

0 0.41 

0.2 0.42 

0.4 0.12 

0.6 -0 .14 

0.8 -0 .26 

61 - 3 

This paper [I0] 

0.43 

0.55 
0.40 

0.48 

0.08 
0.20 

-0 .17 

-0 .07 

[11] 

0.60 

0.46 

0.16 

-0 .10 

62 - 3 

This paper 

O.54 

0.46 

0.30 

0.13 

0.14 

[11] 

0.82 

0.68 

0.52 

0.36 

6 3 - 3  

This paper 
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Figures 1-6 present spectral distributions of the fourth-order moments in terms of normalized variables 
p ~ , ~  = kE~,##(k)/f E~,~#(k) dk and kAo (no summing over a or/3). Here the values of the dimensionless 
radius are given: r I = r/R, = 0, 0.4, 0.6, 0.8. 

The spectral distributions are concentrated around some universal dependence similar to the case of 
second- and third-order moments [2]. Distortions in the inhomogeneous flow close to the wall are small. This is 
probably due to the fact that the spectrum for a fourth-order moment is similar to the convolution of spectra 
for the second-order moments resulting in wiping out the distortions. 

Data on the behavior of the spectra for fourth-order moments are essential for the refinement of 
the semiempirical theory of turbulent transfer. In particular, this would provide a means for tracing the 
relationship between the hypothesis that fourth-order cumulants are equal to zero, and the correlation 
moments of the fourth and second order. 

This work was supported by the Russian Foundation for Fundamental Research (Grant 93-013-17632). 
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